Chapter 4: Roundoff and Truncation Errors

Department of Mechanical Engineering
Choi Hae Jin
Chapter Objectives

- **Roundoff Error**
 - Understanding how roundoff errors occur because digital computers have a limited ability to represent numbers.
 - Understanding why floating-point numbers have limits on their range and precision.

- **Truncation Error**
 - Recognizing that truncation errors occur when exact mathematical formulations are represented by approximations.
 - Knowing how to use the Taylor series to estimate truncation errors.
 - Understanding how to write forward, backward, and centered finite-difference approximations of the first and second derivatives.
 - Recognizing that efforts to minimize truncation errors can sometimes increase roundoff errors.
Error Definitions

- True error (E_t): the difference between the true value and the approximation.
 - $E_t = \text{True value} - \text{approximation}$

- Absolute error ($|E_t|$): the absolute difference between the true value and the approximation.

- True fractional relative error: the true error divided by the true value.
 - True fractional relative error = ($\text{true value} - \text{approximation}$)/$\text{true value}$

- Relative error (ε_t): the true fractional relative error expressed as a percentage.
 - $\varepsilon_t = \text{true fractional relative error} \times 100\%$
The previous definitions of error relied on knowing a true value. If that is not the case, approximations can be made to the error.

The **approximate percent relative error** can be given as the approximate error divided by the approximation, expressed as a percentage - though this presents the challenge of finding the approximate error!

For iterative processes, the error can be approximated as the **difference in values between successive iterations**.
Using Error Estimates

- Often, when performing calculations, we may not be concerned with the sign of the error but are interested in whether the absolute value of the percent relative error is lower than a prespecified tolerance ε_s. For such cases, the computation is repeated until $|\varepsilon_a| < \varepsilon_s$.

- This relationship is referred to as a stopping criterion.
Q. How many terms are required in calculation of $e^{0.5} (=1.648721...)$ using a Maclaurin series expansion, in which the result is correct to at least 3 significant figure?

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}$$

Maclaurin series

Error criterion for 3 significant figure

$$\varepsilon_s = (0.5 \times 10^{2-n})\% = (0.5 \times 10^{2-3})\% = 0.05\%$$

(Scarborough, 1966)
Example 4.1 (2)

<table>
<thead>
<tr>
<th>Terms</th>
<th>Results</th>
<th>ε_t (%)</th>
<th>ε_a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>9.02</td>
<td>33.3</td>
</tr>
<tr>
<td>3</td>
<td>1.625</td>
<td>1.44</td>
<td>7.69</td>
</tr>
<tr>
<td>4</td>
<td>1.6458000000</td>
<td>0.175</td>
<td>1.27</td>
</tr>
<tr>
<td>5</td>
<td>1.648437500</td>
<td>0.0172</td>
<td>0.158</td>
</tr>
<tr>
<td>6</td>
<td>1.648697917</td>
<td>0.00142</td>
<td>0.0158</td>
</tr>
</tbody>
</table>

Scarborough Error Criterion is Conservative!!
Roundoff Errors

Roundoff errors arise because digital computers cannot represent some quantities exactly. There are two major facets of roundoff errors involved in numerical calculations:

- Digital computers have size and precision limits on their ability to represent numbers.
- Certain numerical manipulations are highly sensitive to roundoff errors.
Computer Number Representation

- Bit: binary number (0/1)
- Byte: 8 bit
- Word
 - Basic unit for expressing number
 - ex) 16 bit or 2byte word
- Decimal expression (positional notation)
 \[8642.9 = (8 \times 10^3) + (6 \times 10^2) + (4 \times 10^1) + (2 \times 10^0) + (9 \times 10^{-1}) \]
- Binary expression (positional notation)
 \[101.1 = (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) = 4 + 0 + 1 + 0.5 = 5.5 \]
Integer Representation

- For an n bit word, the range would be from \(-2^{n-1} + 2^{n-1}-1\)
- The numbers above or below the range can’t be represented

Ex. 16 bit word

\[
\begin{array}{cccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
\end{array}
\]

\(\text{Sign} \quad \text{Magnitude}
\]

\[
(10101101)_{2} = 2^{7} + 2^{5} + 2^{3} + 2^{2} + 2^{0} = 128 + 32 + 8 + 4 + 1 \\
= (173)_{10}
\]
Integer Representation

- Upper limit, Lower limit and zero for 16 bit word

\[(0111\cdots111)_2 = 2^{14} + 2^{13} + \cdots + 2^2 + 2^1 + 2^0 = 32,767 = 2^{15} - 1\]
\[(0000\cdots000)_2 = 0\]
\[(1111\cdots111)_2 = 2^{14} + 2^{13} + \cdots + 2^2 + 2^1 + 2^0 = -32,767 = -(2^{15} - 1)\]
\[(1000\cdots000)_2 = -32,768\]

-32768 \((-2^{n-1})\) < integer < 32767 \((2^{n-1}-1)\)
Floating Point Representation

- The number is expressed as $s \times b^e$
 where, s: the mantissa (significand), b: base, e: exponent

- Ex.) Base-10 computer with a 5 bit word

 $S_1d_1.d_2 \times 10^{S_0d_0}$

 Range = +9.9X10$^+9$ ~ +1.0 X 10$^{-9}$

- Minimum: -9.9×10^9
- Smallest: -1.0×10^{-9}, 1.0×10^{-9}
- Maximum: 9.9×10^9

Overflow

"Hole" at zero

Underflow

Overflow
Roundoff Errors

- Base-10 computer with a 5 bit word
 \[S_1d_1.d_2 \times 10^{S_0d_0} \]

- \(2^{-5} = 0.03125 \Rightarrow 3.1 \times 10^{-2}\)
 \(\Rightarrow\) roundoff error =
 \[\frac{(0.03125 - 0.031)}{0.03125} = 0.008 = 0.8\% \]

- Because of the limited number of bits for significand and exponent, Roundoff errors occur.
 \[\pi = 3.141593 \text{ for 16-bit word computer} \]
 \[\pi = 3.14159265358979 \text{ for 32-bit word computer} \]

- Although adding significand digits can improve the approximation, such quantities will always have some roundoff error when stored in a computer
By default, MATLAB has adopted the IEEE double-precision format in which eight bytes (64 bits) are used to represent floating-point numbers:
\[n = \pm (1+f) \times 2^e \]

- The sign is determined by a sign bit
- The mantissa \(f \) is determined by a 52-bit binary number
- The exponent \(e \) is determined by an 11-bit binary number, from which 1023 is subtracted to get \(e \)
Floating Point Ranges

- The exponent range is -1022 to 1023. (11 bits including 1 bit for sign)

- The largest possible number MATLAB can store has
 - +1.111111…111 X 2^{1023} = (2-2^{-52}) X 2^{1023}
 - This yields approximately $2^{1024} = 1.7997 \times 10^{308}$

- The smallest possible number MATLAB can store with full precision has
 - +1.00000…00000 X 2^{-1022}
 - This yields $2^{-1022} = 2.2251 \times 10^{-308}$

Note: Hole was greatly narrowed.
Maximum, Minimum & Machine epsilon in MATLAB

- The 52 bits for the significand f correspond to about 15 to 16 base-10 digits.
- The machine epsilon in MATLAB’s representation of a number is thus $2^{-52} = 2.2204 \times 10^{-16}$

```matlab
>> format long
>> realmax
ans =
    1.797693134862316e+308
>> realmin
ans =
    2.225073858507201e-308
>> eps (machine epsilon)
ans =
    2.220446049250313e-016
```
Numerical Problems

- $1.557 + 0.04341 = 0.1557 \times 10^1 + 0.004341 \times 10^1$
 $= 0.160041 \times 10^1 = 0.1600 \times 10^1$

- The excess number of digits were chopped off, leading to error.

- $36.41 - 26.86 = 0.3641 \times 10^2 - 0.3641 \times 10^2$
 $= 0.0955 \times 10^2 \rightarrow 0.9550 \times 10^1$

- The zero added to the end.

- $0.7642 \times 10^3 - 0.7641 \times 10^3 = 0.0001 \times 10^3 = 0.1000$

- Three zeros are appended.
Truncation Errors

- Truncation errors are those that result from using an approximation in place of an exact mathematical procedure.

- Example 1: approximation to a derivative using a finite-difference equation:

\[
\frac{dv}{dt} \approx \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}
\]

Example 2: The Taylor Series
The Taylor Theorem and Series

- The Taylor theorem states that any smooth function can be approximated as a polynomial.
- The Taylor series provides a means to express this idea mathematically.

\[f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \cdots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + R_n \]
The Taylor Series

\[f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \cdots + \frac{f^{(n)}(x_i)}{n!}h^n + R_n \]
Truncation Error

- In general, the nth order Taylor series expansion will be exact for an nth order polynomial.
- In other cases, the remainder term R_n is of the order of h^{n+1}, meaning:
 - The more terms are used, the smaller the error, and
 - The smaller the spacing, the smaller the error for a given number of terms.
Numerical Differentiation

- The first order Taylor series can be used to calculate approximations to derivatives:
 - Given: \(f(x_{i+1}) = f(x_i) + f'(x_i)h + O(h^2) \)
 - Then: \(f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h) \)

- This is termed a “forward” difference because it utilizes data at \(i \) and \(i+1 \) to estimate the derivative.
Differentiation (cont)

- There are also backward difference and centered difference approximations, depending on the points used:
 - **Forward:**
 \[f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h) \]
 - **Backward:**
 \[f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + O(h) \]
 - **Centered:**
 \[f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2) \]
Total Numerical Error

- The *total numerical error* is the summation of the truncation and roundoff errors.
- The truncation error generally *increases* as the step size increases, while the roundoff error *decreases* as the step size increases - this leads to a point of diminishing returns for step size.

![Graph showing the relationship between log step size and log error, with annotations for total error, truncation error, and round-off error, and a point of diminishing returns.]
Other Errors

- Blunders - errors caused by malfunctions of the computer or human imperfection.
- Model errors - errors resulting from incomplete mathematical models.
- Data uncertainty - errors resulting from the accuracy and/or precision of the data.